
FPGA-Based Sonar Processing�

Paul Graham and Brent Nelson
Department of Electrical and Computer Engineering

Brigham Young University, Provo, UT
grahamp@ee.byu.edu, nelson@ee.byu.edu

Abstract

This paper presents the application of time-delay sonar beamform-
ing and discusses a multi-board FPGA system for performing sev-
eral variations of this beamforming method in real-time for realistic
sonar arrays. Additionally, we show that our proposed FPGA sys-
tem has a six to twelve times performance advantage over an equiv-
alent system created using currently available, high-performance
DSPs designed for multiprocessing systems. This performance ad-
vantage is due to the simplicity of the core calculation, the limita-
tions of the the DSP’s address calculation hardware, and the ability
to customize the I/O of the FPGA to the application.

1 Introduction

Field-programmable gate arrays (FPGAs) have been used for many
computational tasks since their invention [2, 1, 6, 9, 11]. In much
of the work to date, FPGAs have been found to be reasonable alter-
natives to custom hardware (ASICs) or software implementations
of applications — they provide speed-ups over software through
hardware specialization while still providing the flexibility to adapt
the hardware to changing application needs [12].

A large fraction of the solutions reported in the research com-
munity have focused on smaller computational problems — prob-
lems for which one or a handful of general-purpose processors
(GPPs) or digital signal processors (DSPs) could be used to com-
pute the results in a reasonable amount of time, though more slowly
than hardware solutions to the same problems. Additionally, some
work has been done in comparing DSPs and FPGAs in performing
core digital signal processing operations[8]. In this paper, we dis-
cuss a complete application — sonar beamforming — which can
require tens or hundreds of GPPs or DSPs to provide the results
in real-time and compare the performance of multi-DSP and multi-
FPGA implementations.

With regard to sonar beamforming, we have determined that
FPGA-based computing can outperform DSPs by up to an order of
magnitude. This is in spite of the fact that beamforming is made up

�Effort sponsored by the Defense Advanced Research Projects Agency (DARPA)
and Rome Laboratory, Air Force Materiel Command, USAF, under agreement number
F30602-97-1-0222. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright annotation thereon.

principally of multiply-accumulate operations — such operations
seem to be naturally suited to the capabilities of DSPs. Addition-
ally, we have found that when coupled with a high-bandwidth inter-
connection network, FPGA-based systems function well as multi-
processor systems, especially, when taking advantage of the FP-
GAs’ abilities to perform custom, application-specific I/O func-
tions.

Below, we will first introduce the sonar beamforming applica-
tion and its computational requirements. Next, we will introduce
one of our designs for beamforming using FPGA-based custom
computing machines (CCMs), including a discussion of individual
processor architectures and overall system architectures. Following
this we will provide a comparison of sonar processing on FPGA-
based and DSP-based multicomputers. The final sections of the
paper will then outline future work that we plan to complete in this
area as well as a summary of our conclusions.

2 Conventional Beamforming

For this paper, we will concentrate on conventional time-delay
sonar beamforming (as opposed to adaptive beamforming,
frequency-domain beamforming, or a number of other variations).
In general, beamforming is a spatial filtering operation performed
on the data received by an array of sensors, such as antennas, mi-
crophones, or hydrophones. It provides a system with the ability
to “listen” directionally even when the individual sensors in the ar-
ray are omnidirectional. Beamforming not only causes the system
to be more sensitive to signals coming from a specific direction,
but also attenuates the noise and interferences coming from other
directions.

One method used to perform beamforming is delay-sum, or
time-delay, beamforming. In this method, the spatial filtering re-
sults from the coherent (in-phase) summing of the signals received
by the sensors in the array. A signal’s propagation time between
sensors in the water can be calculated using a knowledge of the
the signal’s propagation speed through water, the distance between
sensors, and the signal’s direction of arrival. With this information,
signals received by the array are addedin-phaseby taking appro-
priately delayed samples from a sample memory for each sensor.
Signals approaching from directions other than the direction of in-
terest are not coherently summed and are thus attenuated compared
to signals arriving from the direction of interest. Delay-sum beam-
forming has the important characteristic that the beams formed are
“broadband” since they are sensitive to a wide range of frequen-
cies (as opposed to being tuned to specific frequencies). Despite
(or even because of) its simplicity, delay-sum beamforming is still
commonly used in many sonar applications.

The following pseudo-code represents the delay-sum beamform-
ing calculation for a single beam:

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1998 2. REPORT TYPE

3. DATES COVERED
 00-00-1998 to 00-00-1998

4. TITLE AND SUBTITLE
FPGA-Based Sonar Processing

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Brigham Young University,Department of Electrical and Computer
Engineering,Provo,UT,84602

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

formBeam(b) {
response = 0;
for (s=0;s<numSensors;s++)
response = response +

shade[b][s]*
dataSamples[s][delayFunction(b,s)];

}

The calculation is basically a multiply-accumulate (MAC) op-
eration which applies a windowing function, represented by the
shadearray, to the appropriately delayed versions of the received
signal for all of the sensors. ThedataSamplesarray represents a
fixed-size buffer which holds a running history of the lastN sam-
ples received by each sensor. The functiondelayFunction()returns
the location of the sample to sum, using the beam’s direction and
the sensor’s position to ensure that signals coming in the beam’s di-
rection are coherently summed. Notice that the shade, or window-
ing, values are also dependent on the beam direction and sensor po-
sition; this provides the designer with the ability to determine the
filter’s spatial response, called thebeam response, for each beam
direction, including the ability to cancel out known interferences.

Though the calculation itself is trivial, the demands of perform-
ing this calculation for thousands of beams in real-time greatly in-
creases the amount of hardware required for the application. For
example, if an array of 400 sensors is sampled at 2 kHz and if
10,000 beams must be formed, then the computation requires a pro-
cessing rate of:

Rcalculations = 2000 kHz � 400 sensors

�10; 000 beams � 2 ops (1)

= 16x109 operations per second (2)

So, approximately 16 billion operations — 8 billion multiplies and
8 billion additions — must be performed per second. With a cal-
culation rate of one arithmetic operation per cycle, it would require
eighty 200MHz processors to calculate at this rate, ignoring pro-
cessing overhead such as cache effects, effective address calcula-
tions, and branching [4].

For a detailed treatment of beamforming and its many forms,
we refer the reader to [10], [5], and [7].

3 FPGA Implementations of Time-Domain Beamforming

3.1 PE Architectures

A complete FPGA beamformer will consist of a number of inter-
connected processing elements (PE’s), each of which implements
the pseudo-code given above for some number of beams and sen-
sors. The computation has four major parts. First, the PE must
determine the offset into the sensor history memory to use for the
current beam and sensor. This calculation is represented in the
pseudo-code by the functiondelayFunction(b,s). This is generally
done via a look-up table since the function to find the offset may
involve a complex calculation depending on the the sensor geome-
try (which may be dynamic) and the shape of the wavefronts. Once
the sample’s location is known, it is then retrieved from memory.
The third step is to retrieve the shade factor. Finally, the sensor
value is multiplied by the shade factor and accumulated. This is
repeated for all sensors to create a single beam. For real-time oper-
ation, the beamforming hardware must calculate all of the beams of
interest for each set of new samples; in other words, as implied by
the computational requirements discussed earlier, all beams must
be calculated at the sensor sample rate.

The sample data for the designs discussed in this paper are as-
sumed to be 12-bit fixed point values. The FPGA-based beam-
former designs use the data at full 12-bit precision and account for

bit growth during the accumulations and multiplies, so the results
are provided to full precision.

The example problem used in this paper is not purely hypothet-
ical — it is based on an existing sonar array with which we are
familiar. Nevertheless, the parameters have been changed a bit to
result in round numbers for our calculations while maintaining ap-
proximately the same real-time computational requirements. The
parameters for our sonar beamforming problem are: 10,000 beams,
400 sensors, and a 2kHzsample rate. The storage needed to hold
the sensor sample histories for this array, based on the physical
dimensions of the array and the speed of sound in water is 650
samples deep.

Over the past 9 months, we have designed numerous FPGA-
based delay-sum beamformers; all have the general structure shown
in Figure 1. This FPGA-based beamformer PE is quite small, under

Sample
Data

Memory

Sample
Offset
Table

Shade
Table

SPE
Control

MAC

Beam to HostHandshaking
with Host

Data
from Host

Data Data DataAddrAddrAddr

MAC control

Figure 1: Beamforming Processor Block Diagram

400 Xilinx XC4000XL CLBs, and can execute at frequencies in
the range of 40 to 50 MHz on “-1” speed grade Xilinx XC4000XL
FPGAs. As a result of pipelining, each PE is able to complete one
MAC per cycle. The memories used are 256Kx16 SRAMs, four
of which surround each FPGA in the system. Packing the sample
offset and shade value into a single word permits two beamforming
processors to be placed on each FPGA.

As a final note on FPGA-based delay-sum beamformers, the
PE architecture in Figure 1 represents an upper bound — certain
sensor arrays have symmetries which can be exploited to reduce
the storage required and the complexity of the address generation
logic. For instance, for a spherical array, the sample addresses and
shade values are not stored in the FPGA memories at all but can
be broadcast to all PE’s at once from an external host. For this
spherical array design, the memory requirements for each processor
reduce to one external SRAM, allowing four PEs per FPGA.

3.2 System Architecture

The target platform for this beamforming design is the hypothetical
FPGA computing board shown in Figure 2. Each board has an in-
terface to a fast, low-latency network such as Myrinet [3]. The con-
nections in the network are made from point to point between two
nodes, as opposed to a bus structure; each connection is capable
of providing two 1.28 Gbit/second (� 160 MB/second) communi-
cations channels — one for incoming data and one for outgoing
data.

RAM
256KX16

FPGA

RAM
256KX16

FPGA

RAM
256KX16

FPGA

RAM
256KX16

FPGA

Host FPGA

Outside World

Myrinet Interface

Figure 2: FPGA Multicomputer Board

The board includes one Myrinet interface processor, one “host”
FPGA, and four processing FPGAs. The four processing FPGAs
are connected in a simple ring, each connecting to two neighbors.
For the transmission of computation and configuration data, the
host FPGA has a separate bus to each of the four ring FPGAs. Ad-
ditional buses (not shown) allow the FPGAs to connect directly
to neighboring computing boards or to interface with other digital
equipment.

Several options exist for organizing the beamforming calcula-
tion across processors. The first option is for each PE to calculate
the beam responses for a subset of the total beams. As each beam is
calculated by the PEs, the results are sent to the host FPGA, which
forwards the data over Myrinet to the network’s main beamform-
ing host for further processing and display. We call this abeam-
orientedapproach. It requires the most PE storage since all sensor
data must reside at each PE. However, it requires the least amount
of interprocessor communication.

Another option is to have each PE perform the MACs for a sub-
set of the sensors but for all of the beams, thus, creating only partial
beam responses. These partial beam responses are then summed
externally to finish the calculations. We call this organization a
sensor-orientedapproach. For example, if there are 400 sensors,
10,000 beams, and 100 PEs, each PE would perform the MACs for
only 4 sensors. To complete the beamforming calculation, a net-
work of accumulators would be used to accumulate the partially-
formed beams; these accumulators may reside on the FPGAs with
the beamformers, on the host FPGA, and/or on separate boards.
In contrast to the beam-oriented organization, this option has the
smallest memory requirements but the largest amount of interpro-
cessor communication. The smaller memory requirement results
from storing only the sample data for a few sensors on each proces-
sor, as opposed to the entire data set.

Finally, many different combinations of the above two approach-
es are possible. In other words, each beamforming processor may
perform the MACs for a subset of the beams and for a subset of the
sensors. This continuum between beam- and sensor-oriented orga-
nizations provides a way of balancing the memory requirements of
each PE with the level of interprocessor communication required.

3.2.1 Memory Size Comparison

Using the example beamforming application, we will now com-
pare the memory requirements of the two organizational extremes.
The example problem requires a MAC rate of8x109 MACs/second
for real-time calculation. A 40-MHz FPGA-based beamformer can
perform40x106 MACs/second and so 200 PEs are required. At
two PEs per FPGA and four FPGAs per board, a total of 25 boards
will be required.

For the beam-oriented organization, we want to distribute the
processing of the 10,000 beams evenly, so each of the 200 proces-
sors must calculate 50 complete beams. Assuming a sample his-
tory of 650 samples per sensor, each processor in this organization
must store 650samples� 400sensors= 260,000samples= 254x210

samples. Since each sensor sample is a 12-bit value, the entire his-
tory can be stored in one of the external 256Kx16 SRAMs attached
to the FPGA. The total number of sample offset/shade value pairs
that each processor must store is: 400sensors� 50beams= 20,000
value pairs. Assuming that each sample offset/shade value pair can
be stored in a single 16-bit word, the total amount of memory re-
quired per processor is then 280,000 16-bit values.

For a sensor-oriented organization using 200 processors, each
processor would only calculate the partial products for two sen-
sors. Thus the amount of sensor sample data stored locally in each
processor is 650samples� 2 sensors= 1300samples. As for the
number of offset/shade values required, each processor must store:
2 sensors� 10,000beams= 20,000pairs. This amounts to a total
memory requirement of only 21,300 16-bit values, less than one-
tenth of the memory required per processor in the beam-oriented
approach.

3.2.2 Communication Bandwidth Comparison

Now let us compare the communication bandwidth requirements
for these two organizations. The main concern and constraint in the
bandwidth calculation is that the communication across any point-
to-point Myrinet link must not exceed 160 MB/second in either
direction. For the beam-oriented approach and the example prob-
lem, each PE calculates 50 beams per sample period. Since two
PEs fit per FPGA, a FPGA computing board has eight beamform-
ers and, consequently, each board calculates 400 beams per sample
period. Assuming that each beam response is four bytes, the com-
munication bandwidth requirement from each board is 400beams
� 4 bytes/beam� 2 kHz= 3:2x106 bytes/second, which is well un-
der the 160 MB/second unidirectional bandwidth limit. The link
which will have the most traffic is the one which leads to the net-
work’s main host. This host must receive the data from all beam-
formers every sample period. Thus the required input bandwidth
to this node is 10,000beams� 4 bytes/beam� 2 kHz = 80x106

bytes/second, which is about half of the unidirectional maximum
throughput of a Myrinet link.

For the sensor-oriented approach, each PE produces a partial
beam sum for two sensors only but for all of the beams. Let us
assume that the FPGAs on the board have enough left over logic to
sum the partial beams formed on each board. Also, assume that be-
cause of the smaller number of sensors per partial beam, the partial
beam can be represented in three bytes. Consequently, each of the
25 beamforming FPGA boards requires an output communications
bandwidth of 10,000partial beams� 3bytes/beam� 2kHz= 60x106

bytes/second, which is much greater than the 3.2x10
6 bytes/second

per board in the beam-oriented organization.
For completeness, let us finish the communications bandwidth

analysis for the sensor-oriented organization. Note that the total
bandwidth from the beamforming FPGA boards to the accumulat-
ing FPGA boards for the sensor-oriented organization is 25boards
� 60x106 bytes/second per board= 1:5x109 bytes/second. If we

assume that only 80% of peak unidirectional throughput is sustain-
able and the network load is balanced across several accumulating
FPGA boards, then the number of FPGA accumulating boards re-
quired based on network throughput is:

boardsaccumulating =
1:5x109 bytes=sec:

:80 � 160MB=sec: per board
(3)

� 12boards (4)

So the total number of FPGA computing boards would be around
37, including both beamforming and accumulating boards. If each
Myrinet link is at 80% of capacity, then each accumulating board
is receiving 128 MB/second of partial beam results. With three
bytes per partial beam, this translates into about44:7x106 par-
tial beams/second. The accumulating board should easily handle
this accumulation rate since just two FPGAs operating at 40 MHz
should be able to accumulate a sample per cycle, which translates
into an accumulation rate of80x106 accumulations/secondfor just
two FPGAs. Lastly, note that the communication bandwidth to the
network’s host is still80x106 bytes/secondsince the number of
beam responses communicated to the main host is the same as in
the beam-oriented organization. So, the bandwidth of the link to
the host should still be adequate.

Considering the number of FPGA computing boards and the
amount of communication bandwidth required for each organiza-
tion, the beam-oriented approach is the clear choice for our exam-
ple beamforming problem, especially, since each FPGA has enough
SRAM to support two beam-oriented processors. With this infor-
mation in mind, we will use the beam-oriented approach below in
comparisons with DSP-based implementations.

4 Comparison with DSP Implementations

For sonar beamforming, the main competing technology would be
digital signal processors which have support for multi-DSP sys-
tems. DSPs are a natural choice for delay-sum beamforming since
they have been optimized to perform multiply-accumulate opera-
tions efficiently. Also, since beamforming will require many DSPs
to work in parallel to perform the calculations in real-time, support
for multi-DSP systems is also important. A small number of DSPs
have been designed with multiprocessing in mind. These include
Analog Device’s SHARC DSP family and TI’s TMS320C4x DSP
family.

The comparisons given in this section will be with the SHARC
family for several reasons. As far as DSPs go, the SHARC DSPs
have some of the largest on-chip memories in the industry, ranging
from 128 KB to 512 KB of SRAM. This is important in our multi-
processor beamformer system since larger memories translate into
less interprocessor communication (considering beam- vs. sensor-
oriented calculations). Additionally, at 40 MHz, 80 MFLOPs sus-
tainable, and 120 MFLOPs peak, the SHARC ADSP21060 is one
of the highest performance DSPs available at the time of this writ-
ing; this may be surprising considering that many general pur-
pose processors are available which execute at clock rates of 200
MHz and above. Lastly, as mentioned before, the SHARC family
of DSPs supports DSP multiprocessing systems and several meth-
ods for interprocessor communication, both of which are important
for our beamforming applications. Because of these features, the
SHARC DSP is widely used in large, multi-DSP systems both in
industrial and defense-related applications.

This section will begin with a brief introduction to the SHARC
DSP and how well it performs delay-sum beamforming. With this
background, FPGA-based systems will be compared with SHARC
DSP systems based on the performance per processing node, the
cost/performance of the solutions, and their ability to adequately

support the interprocess communication required for delay-sum
beamforming.

4.1 The SHARC DSP

As a brief introduction, the Analog Devices’ Super Harvard Ar-
chitecture Computer (SHARC) DSP has been designed to perform
several digital signal processing tasks efficiently. SHARC DSPs
have a three-stage pipeline and execute each supported arithmetic
operation in a single cycle. Additionally, with its instruction caching
scheme, the SHARC has a peak computation rate of up to three
single-precision floating-point or three 32-bit fixed-point operations
per cycle, assuming all of the operands reside in its register set. The
SHARC DSPs also include on-chip SRAM to provide fast access
to operands.

As an example of the SHARC’s computational performance,
the DSP can execute a floating-point multiply and add in a sin-
gle instruction, Thus, it can complete a floating-point multiply-
accumulate every cycle. To achieve this, the multiply and add op-
erations are “pipelined” in software — in the first cycle, a value is
multiplied with a scaling factor. In the next cycle, the scaled value
is accumulated. So, every cycle the SHARC can carry out a new
multiply while accumulating the result of the last scaling.

To support the peak computational capacity of the SHARC pro-
cessor, the DSP must have an efficient memory system. Each
SHARC has two equally sized banks of dual-ported SRAM on chip,
providing fast data accesses to two operands per cycle. Being a
modified Harvard architecture processor, one of the on-chip mem-
ories stores program and data while the other is exclusively for
data storage. Depending on the SHARC model, the total amount
of on-chip SRAM ranges from 128 KB to 512 KB. One of the
ports to each memory can be accessed by the DSP’s core while the
SHARC’s external I/O interfaces have access to the second port,
allowing for transparent access to the on-chip memories without
disturbing the operation of the DSP core.

Two operands can be accessed from the on-chip SRAM each
cycle — one from the combined program/data memory and the
other from the data-only memory. With this two-operand access,
the bus to the program memory is being used to either load or store
an operand, so the SHARC cannot access program memory simul-
taneously for the next instruction. The SHARC cleverly uses a
two-way set-associative, 32-instruction cache to account for this
situation. When this conflict for program memory first occurs, the
SHARC will go to the cache to see if the next instruction resides in
the cache. Being the first occurrence of the conflict, the instruction
will not be in the cache and a cache miss occurs; the fetch for the
instruction will occur after the data access to program/data mem-
ory and the instruction will be loaded into the cache. Assuming the
instruction does not get replaced in the cache, the next time the in-
struction and two data transfers to or from memory coincide again,
the instruction is simply retrieved from the cache, allowing unhin-
dered access to the two internal SHARC memories. This means
that the DSP can sustain a floating-point MAC per cycle as long as
it has new operands to work on and the instruction is cached.

As an additional memory feature, the SHARC has two address
generators, one for program/data memory and the other for data-
only memory. The address generators provide support for circular
buffer addressing, bit-reversed addressing (for FFTs), and several
indirect and direct memory access modes, including a mode for
addressing memory locations at regular intervals (strides). Specifi-
cally, the address generators are intended to support common DSP
operations such as FIR filters and FFTs.

Lastly, the SHARC DSP family has been designed to support
shared-memory multiprocessing as well as dataflow, SIMD, and
MIMD multiprocessing styles. Up to six SHARC processors plus
a host processor can be combined in a single multiprocessing clus-

ter for shared-memory multiprocessing. In this model, the host,
the SHARCs, and external memory share a common cluster bus.
Moreover, the internal memories of all of the SHARCs in the clus-
ter are mapped into the global memory space of the array and are
accessible by the host and the cluster’s SHARC DSPs. All accesses
to the SHARCs’ internal memories over the multiprocessor bus can
be done transparently to the their processing cores since the mem-
ories are dual ported, as mentioned before. To perform interpro-
cessor communication, a SHARC in the cluster gains control of the
bus (i.e., becomes the bus master) and can then read or write to
the internal memories and registers of the other SHARCs directly;
alternatively, it can setup the slave SHARCs’ DMA controllers to
perform the data transfers. The SHARC multiprocessing architec-
ture also supports a broadcast write where the bus master can write
to the memories of all of the SHARCs in the array.

Dataflow, SIMD, and MIMD styles of processing are supported
through 6 bi-directional, nibble-wide link ports which can be at-
tached to individual, neighboring SHARC processors. Despite be-
ing only nibble-wide, each link port can transmit a byte per cycle,
meaning that with typical SHARC clock rates of 40 MHz, the link
port can transfer 40 MB/second. All six link ports can operate si-
multaneously.

The multiplicity of features provided by the SHARC makes it
a common choice for large multiprocessing DSP applications. De-
spite all of these features, however, we will show that the SHARCs
do not handle all DSP-like operations effectively, even when the
basic computation is dominated by multiply-accumulates.

4.1.1 Delay-Sum Beamforming on SHARC DSPs

The basic operations which the DSP must perform for the delay-
sum beamforming operation are the following:

� A sample-offset table lookup for each sensor in a specific
beam.

� A multiply-accumulate operation which multiplies the sensor
sample values with the appropriate shading factors, accumu-
lating the result for all of the involved sensors.

Since the SHARC can perform a floating-point multiply and ad-
dition in a single cycle, the SHARC should be able to perform the
multiply-accumulate operation quite efficiently, assuming the data
can be provided at an adequate rate. Unfortunately, because of lim-
itations in the address generation logic, a delay-sum beamforming
MAC cannot be performed every cycle or even every other cycle.
At a minimum, it takes three cycles.

Below is an example of the inner-loop assembly code required
for this operation. As a note of clarification, thef registers are
single-precision floating point registers, them registers are the off-
set registers found in the address generators, and thei registers are
the base address registers of the address generators. Additionally,
addressing to the data-only memory is done through calls such as
f1=dm(i1,m1), while program/data memory accesses are performed
by instructions such asf9=pm(i9,m9). The last detail worth men-
tioning is that memory accesses listed with the base (i) register first
are using post-modify addressing where the address formed is the
sum of the base and offset registers and the base register is also
loaded with the resulting sum. Pre-modify addressing is where the
offset (m) register appears as the first argument; the address formed
is again the sum of the the offset and base registers, but the base
register in this case retains its original value after the memory ac-
cess.

beamForm:
/* sample offset tbl. lookup from prog./data mem. */
m1=pm(i8,m8);
/* shade table lookup from program/data memory */

f4=pm(i9,m9);
/* sample history lookup from data-only memory */
f2=dm(m1,i1);
/* loop for beamforming MACs */
lcntr = numSensors, do LoopEnd until lce;

m1=pm(i8,m8); /* sample offset table lookup */
/* parallel multiply, add, shade tbl. lookup */
f8=f2*f4, f12=f8+f12, f4=pm(i9,m9);

LoopEnd: f2=dm(m1,i1); /* sample history lookup */

There are many reasons why the DSP beamforming inner loop
requires three cycles to execute. For example, the sample offset
table lookup takes a cycle, but cannot be performed in the same
instruction as the floating-point multiply and add since it modifies
an address generator register (m1) as opposed to a general-purpose
register such asf2. Similar resource conflicts occur between the
other memory loads and address generator registers — the special-
ized nature of the DSP organization was not designed to handle this
computation as efficiently as it would initially appear.

As far as memory efficiency is concerned, since the instruction
cache is a two-way set-associative cache with 32 entries, the in-
struction fetches in the loop which conflict with accesses to the pro-
gram/data memory can be easily cached. Because of the three-stage
pipeline of the processor (fetch,decode,execute), both the fetches
for the first and last instructions within the loop coincide with ac-
cesses to program/data memory and are held in the SHARC’s in-
struction cache. The second instruction is not cached.

In summary, it might be asked: “Since DSPs are designed to
do MACs efficiently, why does it take three cycles to perform a
beamforming MAC?” The sample offset lookup operation in beam-
forming disrupts the regular memory access patterns the DSP was
designed for. As a result, the zero-overhead looping features of the
DSP including the dual address generators are of no use for this
computation. Further, more sophisticated beamforming schemes
use interpolation to more accurately estimate the sensor values be-
tween samples as compensation for the fact that the signal propa-
gation time to each sensor is generally not an integral number of
sample periods. A pipelined FPGA solution performs this inter-
polation with minimal added circuitry while the DSP inner-loop
grows significantly when attempting it.

4.2 Performance

In this section we compare the performance of SHARC DSPs with
FPGA-based processors for the delay-sum beamformer. First, we
will discuss raw performance issues and then the cost/performance
of the two technologies.

4.2.1 Performance Comparison

For the beamforming example mentioned above (10,000 beams,
400 sensors, and 2kHzsample rate), the computation rate must be
8x109 MACs/second. Since a SHARC DSP executing at 40 MHz
(the highest current clock rating) would have a peak beamforming
MAC rate of 40x10

6

3
= 13:3x106 MACs/second, this particular

problem will require at least 600 SHARC processors for real-time
operation, not including any host processors needed for SHARC
shared-memory multiprocessing and ignoring interprocessor com-
munication and other types of overhead.

For a fully beam-oriented approach using 600 SHARCs, each
DSP would perform the complete MAC operations for 400 sensors
and 17 beams; this would require about 54 KB for the shade and
delay values and an additional 1015 KB for the sensor data, assum-
ing all values are stored in a single-precision floating-point format.
Since the ADSP-21060 has only 512 KB of on-chip SRAM, this is
not an acceptable memory configuration because it would require
off-chip memory accesses, leading to contention for memory on
the SHARC cluster’s shared bus. Thus, for the data to fit in the

relatively small memory of the SHARC, each PE will perform the
MAC operations for 100 sensors and 68 beams. This is a com-
bination of the sensor- and beam-oriented approaches mentioned
earlier and reduces the memory requirements to about 254 KB of
data SRAM to hold the sensor data and about 54 KB of instruc-
tion/data SRAM to hold the shade and sample offset values. As
a result, no external memory is required. (Note that 32-bit fixed-
point formats are also available, but they do not alleviate any of the
storage problems. Also, the SHARC’s special 16-bit floating point
does not provide enough precision for the calculations.) The cost
of this system organization is that some processor — possibly the
host processor in each cluster — must accumulate the values from
4 SHARC processors to obtain 68 fully-formed beams. This is rel-
atively little overhead (�272 cycles) considering that the multiply-
accumulate time for each set of sample data is about 20,000 cycles
and the accumulation by the host can be done in parallel with the
four beamforming SHARCs without disturbing any calculations.

In contrast to the SHARC implementation, the FPGA-based
PEs can perform a MAC every cycle through pipelined operation
and custom address-forming logic. Thus, 200 FPGA-based beam-
formers executing at 40 MHz are all that are required to perform
the delay-sum beamforming calculation. At less than 400 CLBs
per processor using 12-bit data samples, two PEs fit into a Xil-
inx 4028XL having four external 256Kx16 SRAMS, which trans-
lates into only 100 FPGAs for all of the processing. Note that, in
this case, each FPGA can perform the computation of six SHARC
DSPs.

We should mention that the 4028XL was chosen because it was
the cheapest Xilinx FPGA having enough logic and user I/O pins
for the task. We should also point out that it is possible to have more
processors per chip; the number of processors per chip is mainly
limited by the number of memories which can be attached to the
FPGA, which, in turn, is limited by the number of available user
I/O pins on the FPGA. For example, 10 256Kx16 SRAMs could be
attached to a Xilinx XC4085 having 448 user-definable I/O pins
while still leaving 88 other pins for inter-FPGA communication
purposes. This means that 5 FPGA-based beamformers could be
embedded in the 4085 with only 30% overall logic utilization; a
single 4085 operating at 40 MHz would have the performance of
15 SHARC DSPs in this case.

To be fair, the FPGA-based beamformers are performing lower
precision arithmetic than the SHARC (12-bit, 18-bit, and 27-bit),
but neither single-precision floating point nor 32-bit fixed-point is
required for the arithmetic. The FPGA design performs the cal-
culations according to the precision of the data and allows for bit
growth in the calculations as would be expected of a custom design.
However, one simplification the FPGA solution makes is to pack
the sample offset and shade values into a single 16-bit word (10-
bits for the sample offset and 6-bits for the shading factor). This
reduces the number of memory ports the FPGA requires for the
calculation. A similar optimization could be made by the SHARC,
but would not make sense considering the effort required to extract
the data from the 16-bit word.

As another example of the computational advantages of FPGA-
based beamformers over a multi-DSP solution, take the delay-sum
beamforming required for the spherical array mentioned briefly in
Section 3.1. Due to symmetries in the sensor array, no PE storage
is required for the sample offset and shade value — these can be
broadcast from a central node to all PEs. Thus, a single FPGA (Xil-
inx 4052XL) can contain four PEs, providing the computational
power of 12 DSPs.

These six- and twelve-fold computational advantages enjoyed
by the FPGA implementations clearly stem from the increased par-
allelism enjoyed by the FPGAs. A few simple characteristics of
the algorithm and the FPGA implementations contribute to this
increased parallelism. First, the beamforming MAC operation is

fairly simple and easily pipelined. As a consequence, the FPGA-
based MAC unit can operate at speeds comparable to that of the
SHARC. Also as a result of the simplicity of the operation, the
individual beamformers are quite small. From our experience de-
signing delay-sum beamformers, I/O pin limitations have generally
been the main limitation on the amount of parallelism we can ex-
tract from a single FPGA, not the complexity of the PE.

Second, the FPGA system can access more memory every cy-
cle, meaning that it can support more MAC operations simultane-
ously. Said another way, the FPGA’s I/O can be tailored more easily
to the application than the DSP’s. In this application, each FPGA is
able to support both larger amounts of memory and more indepen-
dent memory ports than a SHARC. As mentioned above, the num-
ber of FPGA-based beamformers per FPGA is limited mainly by
the number of user I/O pins of the FPGA in question since having
more I/O pins translates directly into having more memory ports.
Thus, more parallelism can be achieved at the cost of more expen-
sive FPGAs with higher I/O counts.

Third, the FPGA-based beamformers with their application spe-
cific address generators are able to simultaneously fetch all operands
of interest each cycle, allowing each FPGA-based PE to complete a
MAC every cycle. The SHARC address generation scheme, while
extremely efficient for other kinds of MAC operations (FIR filters
and FFTs), is not flexible enough to perform the delay-sum beam-
forming MAC in a single cycle.

4.2.2 Price/Performance

The price-performance of FPGAs for beamforming can be compa-
rable with that of DSPs, if not much better. The SHARC which
best fits the memory and computation requirements of the exam-
ple beamforming application is the 40-MHz ADSP-21060 DSP,
which costs about $325 in small quantities. The FPGA of choice
for the example problem is a Xilinx XC4028XL-1. At a cost of
about $300 in small quantities, the FPGA enjoys about a 6 to 1
price/performance advantage for this application. Further, for the
spherical array example, the FPGA of choice is a Xilinx
XC4052XL-1 which costs about $1000 in small quantities. Even
at this cost, the FPGA still has about a 4 to 1 price/performance
ratio advantage over the SHARC 21060 DSP.

Clearly, this comparison does not factor in total system cost, but
our interest in this study was mainly to compare the computational
elements — FPGAs and DSPs — especially since DSPs might be
expected to have a priceand performance advantage over the FP-
GAs for this apparently DSP-friendly calculation. Before seriously
pursuing this research, we almost dismissed the possibility that FP-
GAs might be an alternative to DSPs for time-domain beamform-
ing considering that FPGA-based designs are generally slower and
much more expensive than high-volume standard parts like DSPs.
Clearly, due to the limitations of the SHARC’s (and probably most
DSPs’) address generation logic and other architectural issues, the
comparison was much more interesting than we initially expected.

To briefly address board cost issues, we will point out a few
things. First, note that the four external 256Kx16-bit SRAMs for
each FPGA may cost in total around $100 to $120, meaning that
the FPGA designs would still have price/performance advantages
of 4.6 to 1 and 3.5 to 1 for the linear and spherical beamform-
ers, respectively, when including memory costs. Additionally, we
have assumed that the cost for the high-speed I/O will be the same
since both systems for our target system will be using Myrinet,
i.e., both boards would require a Myrinet network processor. Ad-
ditionally, since both boards require some sort of host, be it the
Myrinet network processor or some additional FPGA or proces-
sor, the additional cost to the boards should not significantly affect
the price/performance advantage of the FPGAs, except for the fact
that more SHARC boards will be required for the system (50 12-

SHARC boards or 75 8-SHARC boards) than FPGA boards (25
4-FPGA boards), meaning that the DSP system may require more
host processors.

4.3 Interprocessor Communication

Though one might expect the FPGA-based multicomputer to have
more efficient interprocessor communications than the SHARC-
based solution because of the FPGA’s ability to specialize its I/O
functions, we found no significant differences between the two im-
plementation methods for the beamforming algorithm provided here.
This is true mainly because very little interprocessor communica-
tion is actually required for the beam-oriented computation. Also,
considering the communication that does occur, all but a very little
bit can be done transparently to the operation of the beam process-
ing on both platforms.

As a general comment, one potential problem with the SHARC
DSP’s shared bus configuration is that the only way to add addi-
tional memory resources with a high-bandwidth data path to the
SHARC is to attach the memory to the shared multiprocessor bus,
leading to increased bus and memory contention. Several compa-
nies have developed ways to isolate or decouple SHARCs and their
associated memories from the multiprocessor bus to increase the ef-
fective bandwidth between DSP and external memory and reduce
bus and memory contention, but the various solutions can compli-
cate the interprocessor communication model for SHARC clusters,
especially since the host processor may be hindered from direct
access to DSP internal memories. Clearly, with the flexibility of
FPGA I/O, this problem of adding additional memory is not one
generally encountered in properly designed FPGA-based systems.

5 Conclusions and Future Work

Because of the flexibility of FPGAs, their communications and
functions can be specialized to provide higher performance than
multi-DSP systems for some applications, such as the delay-sum
beamforming designs discussed above. This is true even when the
basic calculations can be done effectively by DSPs (e.g.,multiply-
accumulates). Considering how well the custom FPGA-processors
are suited for time-delay beamforming, we believe that the FPGA-
only system would also be better than a combination of DSPs and
FPGAs for the calculation.

Part of our ongoing research involves investigating mixed
DSP/FPGA solutions to frequency-domain sonar processing. Pre-
liminary results indicate that a combination of DSPs for FFT pro-
cessing and FPGAs for the phase-shift computations is an attractive
approach, far superior to either DSP-only or FPGA-only solutions.
Finally, one of the main problems with using FPGAs in multipro-
cessor beamforming systems is the lack of CAD and software sup-
port. This, too, is a subject of our ongoing work.

Acknowledgments

This effort was sponsored the Defense Advanced Research Projects
Agency (DARPA) and Rome Laboratory, Air Force Materiel Com-
mand, USAF, under agreement number F30602-97-1-0222. The
U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright anno-
tation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed
or implied, of the Defense Advanced Research Projects Agency
(DARPA), Rome Laboratory, or the U.S. Government.

We would like to add additional thanks to Robert Bernecky of
the Naval Underwater Warfare Center (NUWC) for his help in un-

derstanding beamforming and its related challenges as well as for
providing parameters for realistic beamforming applications.

References

[1] A BBOTT, A. L., ATHANAS, P. M., CHEN, L., AND EL-
LIOTT, R. L. Finding lines and building pyramids with Splash
2. In Proceedings of IEEE Workshop on FPGAs for Custom
Computing Machines(Napa, CA, Apr. 1994), D. A. Buell and
K. L. Pocek, Eds., pp. 155–161.

[2] BERTIN, P., RONCIN, D., AND VUILLEMIN , J. Pro-
grammable active memories: a performance assessment. In
Research on Integrated Systems: Proceedings of the 1993
Symposium(1993), G. Borriello and C. Ebeling, Eds., pp. 88–
102.

[3] BODEN, N., COHEN, D., FELDERMAN, R., KULAWIK , A.,
SEITZ, C., SEIZOVIC, J., AND SU, W.-K. Myrinet—a
gigabit-per-second local area network.IEEE Micro 15, 1
(February 1995), 29–36.

[4] GRAHAM , P.,AND NELSON, B. Genetic algorithms in soft-
ware and in hardware — A performance analysis of worksta-
tion and custom computing machine implementations. InPro-
ceedings of IEEE Workshop on FPGAs for Custom Comput-
ing Machines(Napa, CA, Apr. 1996), J. Arnold and K. Pocek,
Eds., pp. 216–225.

[5] JOHNSON, D. H., AND DUDGEON, D. E. Array Signal Pro-
cessing: Concepts and Techniques. Prentice Hall Signal Pro-
cessing Series. Prentice-Hall, Englewood Cliffs, NJ, 1993.

[6] M OLL, L., VUILLEMIN , J., AND BOUCARD, P. High en-
ergy physics on DECPeRLe-1 programmable active mem-
ory. In ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays(Monterey, CA, Feb. 1995), pp. 47–
52.

[7] OWSLEY, N. L. Array Signal Processing. Prentice-Hall Sig-
nal Processing Series. Prentice-Hall, Englewood Cliffs, NJ,
1985, ch. Sonar Array Processing, pp. 115–193.

[8] PETERSEN, R. J.,AND HUTCHINGS, B. L. An assessment of
the suitability of FPGA-based systems for use in digital signal
processing. InField-Programmable Logic and Applications
(Oxford, England, Aug. 1995), W. Moore and W. Luk, Eds.,
Springer, pp. 293–302.

[9] SHIRAZI , N., ATHANAS, P. M., AND ABBOTT, A. L. Im-
plementation of a 2–D fast fourier transform on an FPGA–
based custom computing machine. InField-Programmable
Logic and Applications. 5th International Workshop on Field-
Programmable Logic and Applications(Oxford, UK, Sept.
1995), W. Moore and W. Luk, Eds., Springer-Verlag, pp. 282–
292.

[10] VEEN, B. V., AND BUCKLEY, K. Beamforming: A versatile
approach to spatial filtering.IEEE ASSP Magazine 5, 2 (April
1988), 4–24.

[11] VILLASENOR, J., SCHONER, B., CHIA , K., AND ZAPATA,
C. Configurable computing solutions for automatic target
recognition. InProceedings of IEEE Workshop on FPGAs
for Custom Computing Machines(Napa, CA, Apr. 1996),
J. Arnold and K. L. Pocek, Eds., pp. 70–79.

[12] WIRTHLIN , M. J., AND HUTCHINGS, B. L. Improv-
ing functional density through run-time constant propaga-
tion. In ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays(Monterey, CA, Feb. 1997), pp. 86–
92.

